Topological Classification of Conformal Actions on pq-Hyperelliptic Riemann Surfaces
نویسنده
چکیده
A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ρ for which X/ρ is an orbifold of genus p. Here we classify conformal actions on 2-hyperelliptic Rieman surfaces of genus g > 9, up to topological conjugacy and determine which of them can be maximal.
منابع مشابه
Research Article Topological Classification of Conformal Actions on pq-Hyperelliptic Riemann Surfaces
متن کامل
0 Se p 20 07 Exceptional Points in the Elliptic - Hyperelliptic Locus
An exceptional point in the moduli space of compact Riemann surfaces is a unique surface class whose full automorphism group acts with a triangular signature. A surface admitting a conformal involution with quotient an elliptic curve is called elliptic-hyperelliptic; one admitting an anticonformal involution is called symmetric. In this paper, we determine, up to topological conjugacy, the full...
متن کاملThe Geometry of Two Generator Groups: Hyperelliptic Handlebodies
A Kleinian group naturally stabilizes certain subdomains and closed subsets of the closure of hyperbolic three space and yields a number of different quotient surfaces and manifolds. Some of these quotients have conformal structures and others hyperbolic structures. For two generator free Fuchsian groups, the quotient three manifold is a genus two solid handlebody and its boundary is a hyperell...
متن کاملOn p-hyperelliptic Involutions of Riemann Surfaces
A compact Riemann surface X of genus g > 1 is said to be phyperelliptic if X admits a conformal involution ρ, called a p-hyperelliptic involution, for which X/ρ is an orbifold of genus p. Here we give a new proof of the well known fact that for g > 4p + 1, ρ is unique and central in the group of all automorphisms of X. Moreover we prove that every two p-hyperelliptic involutions commute for 3p ...
متن کاملCorrelation Functions for Some Conformal Theories on Riemann Surfaces
We discuss the geometrical connection between 2D conformal field theories, random walks on hyperbolic Riemann surfaces and knot theory. For the wide class of CFT’s with monodromies being the discrete subgroups of SL(2,R I ) the determination of four–point correlation functions are related to construction of topological invariants for random walks on multipunctured Riemann surfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007